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Abstract-This paper presents the solution of a certain mixed problem for a bimaterial interface
containing a cut. In the plane, elastostatic analysis displacements are prescribed on the lower edge
of the cut and external stresses are applied on its upper edge. Using complex variable techniques,
analytical expressions are derived for all physical quantities, including the compliance of the anchor,
the stress field, and the stress singularities at its edges. Selected numerical values are presented for
these quantities as functions of elastic mismatch. The developed solution can be used to model a
vertically loaded rigid anchor, unbonded on one side, embedded along the interface between two
elastic materials.

1. INTRODUCTION

The mechanical behavior of anchors embedded in brittle materials is an important .con
sideration for many critical design situations. Most of the analytical models that have been
developed to estimate the mechanical response of embedded anchors focused primarily on
stress distributions and load deflection behavior (Sherman, 1940; Muki and Sternberg,
1970; Butterfield and Banerjee, 1971; Keer, 1975; Selvadurai, 1976; Bosakov, 1980; Luk
and Keer, 1980; Pak and Gobert, 1990). Recent efforts to predict the pull-out capacity of
anchor bolts have included the cracking that often emanates from the edge(s) of the anchor
and grows towards a free surface (Ballarini et aI., 1986, 1987).

In the aforementioned analyses the anchor was surrounded by a homogeneous isotropic
linear elastic matrix. This paper presents the solution to the plane elastostatics problem
shown in Fig. l(a). A very thin rigid plate is embedded along the interface between two
dissimilar semi-infinite planes and is loaded by a vertical force. One side of the plate is
debonded (from the material in the upper half-plane), while the other side is perfectly
bonded to the material in the lower half-plane. Because the plate is assumed very thin, its
effects on the surrounding medium can be approximated with those produced by a bima
terial interface containing a cut, with displacements prescribed on the lower edge and
stresses prescribed on the upper edge. Of particular interest is the effect of elastic mismatch
on the compliance of the anchor, the stress field, and the stress singularities at the edges of
the anchor.

The corresponding plane problem for the homogeneous medium was first solved by
Sherman (1940) using singular integral equations. An omission in his solution was pointed
out by Muskhelishvili, who derived the solution by reducing the problem to two uncoupled
Hilbert problems. The solution to the penny-shaped cut was presented by Keer (1975). An
interesting feature of these solutions is that there are two stress singularities at the edge of
the plate, one equal to -1/4+ilogK/4n, the other to -3/4+ilogK/4n, where K = 3-4v
for plane strain and K = (3-v)/(1-v) for plane stress.

The solution presented in this paper relies on a set of potentials that reduce the
boundary conditions to a Hilbert problem, whose solution is obtained in closed form. These
potentials are presented in the following section.
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Fig. 1. (a) Thin anchor along a bimaterial interface; (b) bimaterial interface containing a cut wi
stresses (displacements) prescribed on upper (lower) edge.
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Fig. 2. (Jyy/P for plane strain (fl2/fll = 1, V, = V2 = 0.2).
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2. ANALYTIC CONTINUATION METHOD FOR A BIMATERIAL INTERFACE

This section presents an analytic continuation procedure that can be used to formulate
problems associated with a bimaterial interface containing a cut. The advantage of the
method is that it eliminates the need to develop the Green's functions for a dislocation and
a point force at the interface, and the associated singular integral equations. The method
essentially generalizes the procedure outlined in Muskhe1ishvili's treatment of Sherman's
problem.

Consider the class of plane elastostatics problems associated with the upper half-plane
s+ with moduli III and Vj and the lower half-plane S- with moduli 112 and V2, where Ili and
Vi' i = 1,2, denote the shear modulus and Poisson ratio, respectively.

The stresses and displacements may be expressed in terms of the Muskhelishvili poten
tials (Muskhelishvili, 1953) as follows:

(1)

(2)

(3)

The subscript i (i = 1,2) denotes "in region S;" ; <1>1 and '¥ I correspond to the potentials
for the upper half-plane and <1>2 and '¥2 correspond to the potentials for the lower half
plane. Moreover, z is the complex variable x+ iy, the prime denotes differentiation with
respect to z, and an overbar denotes complex conjugation.

As shown by Mukai et al. (1990), for such interface problems it is more convenient to
introduce additional "jump" potentials as follows. Making use of the fact that if fez) is
analytic for z in region R, then /(z) == fez) is analytic for z in region R, the following
analytic potentials are constructed:

{
<I>I (z) - [11>2 (z) + zl1>~ (z) +\P2(z)]

Qs(z) = - - -
<1>2 (z) - [<I>I (z) + z<l>; (z) + '¥ I(z)]

(4)
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Fig. 3. (Jxy/P for plane strain (1l2/1l1 = 1, VI = V2 = 0.2).
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Fig. 4. (Jxx/P for plane strain (J-I.2/J-I., = 1, v, = V2 = 0.2).

(5)

In terms of these potentials the discontinuities in stresses and displacements across the
interface are given by

(6)

(au .ov)+ (au .OV)- _ + _
ax +1 ax - ax +1 ax - 0d (X)-Od (x). (7)

The superscript + (-) represents the limit as the interface is approached from region
8 1(82), It is obvious from these last two equations that the discontinuities in the potentials
represent, respectively, force and dislocation distributions along the interface. Equations

x

o
3

· .................................· .· .

0.1

p 0
y

-j

-0.1

C'Jyy/p

02/01=5
. .. Vl=V2=O.2

........... ';'" : ';' : Plane Strain 2

Fig. 5. (Jyy/P for plane strain (J-I.2/J-I., = 5, VI = V2 = 0.2).
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(4) and (5) can be readil'y inverted to recover the potentials that appear in eqns (1)-(3).
The resulting representatIOns become

(8)

(9)

(10)

(11)

3. BOUNDARY CONDITIONS AND REDUCTION TO UNCOUPLED HILBERT PROBLEMS

Equations (6) and (7) clearly demonstrate the usefulness of the jump potentials for
solving problems involving an interface containing a cut. For example, the interface crack
can be treated by setting the discontinuity in stress equal to zero and solving for the crack
opening displacements. The solution of the rigid line inclusion problem, which was obtained
by Ballarini (1990), can be derived by setting the discontinuity in displacement equal to
zero and solving for the stress distribution along the rigid inclusion.

The boundary conditions for the configuration shown in Fig. 1(b) are written as

+ 21l11l2 0d (x), Ixl < 1, y = 0 (12)
112 +III +1(2
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Fig. 6. (JxyfP for plane strain (1l2flll = 5, VI = V2 = 0.2).
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Equations (12) and (13) represent the zero traction and rigid anchor conditions along
the cut, respectively, while eqns (14) and (15) represent the perfect bond along the remaining
part of the interface. A unique solution is obtained by applying the following equilibrium
and single valued displacement conditions:

fl [(au Ov)+ (au OV)-J f1
-I AX +iax - ax +i ax dx = -I (Q;t(x)-Qd(x)) dx = 0.

(16)

(17)

It should be noted that the problem could have been reduced to eqns (12)-(17) in a
less direct way by starting out with the Green's functions for a concentrated force and a
discrete dislocation at the interface, replacing these with distributions, and writing the
boundary conditions in terms of singular integral equations. Equations (12) and (13)
would subsequently be recovered by applying the Plemelj formulae to the singular integral
equations.

Although it is not immediately apparent, eqns (12)-(15) define a Hilbert problem.
That is, eqns (12) and (13) can be cast in the form

(18)

using the process outlined by Clements (1971), which involves multiplying eqn (13) by N,
adding the result to eqn (12), and applying eqn (18). The procedure leads to the eigenvalue
problem

(19)

where m = (1 +13)/(1- 13). This last equation in turn provides the characteristic equation

2 [ (IX - 13) IX +f3J (1 +13)A. + A. K2 1_ 13 + 1_ 13 + 1 _ 13 K2 = 0,

where IX and 13 are the Dundurs constants defined as

13 = J1.2(KI -1)-J1.I(K2 -1)
J1.2(KI + 1)+J1.1(K2 + 1)'

(20)

(21)

(22)
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The two roots of eqn (20), Ai and Al , are associated with two values of N; (i = 1,2),
which are obtained in terms of the eigenvalues through eqn (19). These in turn can be used
to find the corresponding values of Ai> B;. Some trivial manipulations lead to

(23)

(24)

At this point all the constants that appear in eqn (18) have been determined. The
solution of these equations is given by (Muskhelishvili, 1953)

(25)

where

(26)

Thus

The identities

and

I
I n

(1 +x)-Y(1-X)y-1 dx = -.
-1 sm ny

allows eqns (16) and (17) to be written as

(28)

(29)
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Fig. 7. O"xxlP for plane strain (/12//11 = 5, VI = V2 = 0.2).
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Fig, 8, (Jyy/P for plane strain (il2/il, = 0.2, VI = V2 = 0.2).
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l } = {~(AIBZO-AZBd},

Al ei,,(yz-I) (l-A.i l )

sin rcyz

(30)

which provides constants kj • All physical quantities can now be calculated with the closed
form expressions for the potentials Qs(z) and Qd(z). In particular, the crack opening
displacement at the middle of the anchor is given by

crxy/p

GzlGl=O.2
Vl=V2=0.2
Plane Strain. , . ............. , , . 2

o
0.00.0

... . .. .. . ' , -; , , ,. . . .. ~"'~~.,..,..,.-'- :- .
. ''-.,./}Il''''''

·3 ·2 ·1 p 0

Fig. 9. (Jxy/P for plane strain (il2/ill = 0.2, V, = V2 = 0.2).
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Fig. 10. (jxx/P for plane strain (J1.2//11 = 0.2, VI = V2 = 0.2).

Ll =r(Qt (x)-Qi (X) dx = A
I
B

2
~A2BI {-A2k l einCY1-I) (1- ;J

X 2FI(1, YI ; 1+Yl ; -1) + A
l
k

2
einCY2-1) (1- 1

1 ) 2FI(1, Y2 ; 1+Y2 ; -1)}, (31)
Yl 11.2 Y2

where 2FI (1, Y; 1+ Y; - 1) is the hypergeometric function that can be calculated from the
identity

00

2FI(1,y; l+y; -1) = Y I (-lY(y+n)-I.
n~O

4. SELECTED RESULTS

(32)

For plane strain conditions with VI = V2 = 0.2, eqns (31), (1), (2) and (6) were evaluated
for selected values of 112/111' The strengths of the singularities at the edges of the plate and

Table I. Stress singularities and crack opening displacement

/12//11 Yl Y2 1':./1t/P

0.2 O.l398-0.022Ii 0.8602-0.022Ii 0.6437
0.3 0.1649 - 0.0302i 0.8351-0.0302i 0.4946
0.4 0.1841-0.0369i 0.8159-0.0369i 0.4073
0.5 0.1996 - 0.0427i 0.8004 - 0.0427i 0.3487
0.6 0.2126-0.0478i 0.7874-0.0478i 0.3062
0.7 0.2238 - 0.0522i 0.7762-0.0522i 0.2738
0.8 0.2336-0.0561i 0.7664-0.0561i 0.2480
0.9 0.2422 - 0.0596i 0.7578-0.0596i 0.2270

1 0.2500 - 0.0627i 0.7500-0.0627i 0.2095
2 0.3004 - 0.0827i 0.6996 - 0.0827i 0.1206
3 0.3282 - 0.0929i 0.6718 -0.0929i 0.0856
4 0.3467 - 0.0992i 0.6533 - 0.0992i 0.0665
5 0.3602-0.l034i 0.6398 - 0.1034i 0.0545
6 0.3706-0.1064i 0.6294-0.l064i 0.0462
7 0.3790-0.1087i 0.621O-0.l087i 0.0401
8 0.3859 - 0.11 06i 0.6141-0.1l06i 0.0354
9 0.3917 -0.1 120i 0.6083 - 0.1 120i 0.0317

10 0.3968 - O.l132i 0.6032 - 0.1l32i 0.0287
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Fig. 11. Contact stress distribution along the anchor.

the normalized crack opening displacement at the middle of the anchor are presented in
Table 1. It is observed that the boundary conditions assumed along the cut lead to two
"oscillating singularities", which predict interpenetration of material, as discussed by Com
ninou and Dundurs (1980). While it is beyond the scope of this paper, this contradiction
can be avoided by requiring that certain inequalities be incorporated into the formulation,
as was done for interface cracks in a series ofpapers by Comninou and Dundurs (Comninou,
1977a,b, 1978; Comninou and Dundurs, 1979a,b, 1980; Dundurs and Comninou, 1979).
They introduced contact zones of length c at the tips of an interface crack of length 2l and
found that, for tensile loading, (I-c)/l is of the order of 10- 4

. Moreover, the global features
of the stress field were found to be practically the same as those of the interface crack with
no contact zones. These results suggest that, for the vertically loaded anchor analysed in
this paper, the analytic solution can be used to study the global features of the stress field,
but not the stress distribution in the immediate vicinity of the crack tips.

As expected the compliance of the anchor decreases as the stiffness of the lower half
plane increases.

Figures 2-10 are contour plots of the Cartesian stress components, normalized by
multiplying their values by the half-length of the anchor (which is equal to 1), and dividing
by the vertical load P. Figures 2, 5 and 8 show, as expected, that as the stiffness of the
lower half-plane increases (decreases), the compression in the lower half-plane increases
(decreases), while the tension in the upper half-plane decreases (increases). Similar trends
for the magnitudes of the other stress components are observed by comparing Figs 3, 6 and
9 and Figs 4, 7 and 10.

The contact stress distribution (6) is shown in Fig. 11. An interesting feature of the
solution is that the shear stress needed to satisfy the rigid line boundary conditions is
relatively small. At first sight is seems that the area under each normal stress distribution
is not equal to the applied load. It should be noted, however, that the strength of the
singularity at the tips of the anchor increases with decreasing pz/PI, and that the normal
stress curves in Fig. 11 cross somewhere within the interval 0.9 < x < 1.0.
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